0

Full Content is available to subscribers

Subscribe/Learn More  >

Predictive Boundary Management Control of a Hybrid Powertrain

[+] Author Affiliations
Jie Yang, Guoming G. Zhu

Michigan State University, East Lansing, MI

Paper No. DSCC2014-6009, pp. V002T20A002; 7 pages
doi:10.1115/DSCC2014-6009
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Hybrid Electric Vehicle (HEV) is capable of improving fuel economy with reduced emissions over traditional vehicles powered by the internal combustion engine alone. However the HEV durability is significantly limited by the battery useful life; and the battery life could be significantly reduced if it was operated over its allowed charging or discharging limits, which could occur especially at extremely low battery temperatures, leading to permanent battery damage and reduced battery life. In order to extend the battery life, this paper proposed a battery boundary management control strategy based upon the predicted desired torque to proactively make the engine power available to reduce future battery over-discharging. The proposed control strategy was validated in simulations and its performance was compared with the baseline control strategy under US06, and other four typical city and highway driving cycles. The simulation results show that the proposed control strategy is very effective when the battery temperature is under zero Celsius degree, and the over-discharged power is reduced more than 65% under aggressive US06 and ARB02 driving cycles, 45% under highway and city FTP and city NYCC driving cycles, and 30% under highway IM240 driving cycle, respectively.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In