Full Content is available to subscribers

Subscribe/Learn More  >

Functional Electrical Stimulation for Equilibrium-Point Control of Human Ankle Movement: Frequency Domain System Identification of Human Ankle Dynamics

[+] Author Affiliations
Yuto Yamashita, Kazuya Maegaki, Kazuhiro Matsui, Takanori Oku, Kanna Uno, Keitaro Koba, Pipatthana Phatiwuttipat, Kenta Murakami, Mitsunori Uemura, Hiroaki Hirai, Fumio Miyazaki

Osaka University, Toyonaka, Osaka, Japan

Paper No. DSCC2014-6200, pp. V002T16A010; 5 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME


This paper presents a novel method for creating an electrical stimulation pattern to control the equilibrium-point (EP) of human ankle movement. Focusing on the synergetic activation of agonist–antagonist (AA) muscles, the proposed method employs the ES-AA ratio (the ratio of the electrical stimulation levels for AA muscles) and the ES-AA sum (the sum of the electrical stimulation levels for AA muscles), which are based on the AA ratio (the ratio of the electromyography (EMG) voltage levels for AA muscles) and the AA sum (the sum of the EMG voltage levels for AA muscles) used in human movement analysis [1, 2]. The ES-AA ratio is related to the EP of the joint whereas the ES-AA sum is associated with mechanical stiffness of the joint. Using the AA concepts, we estimated the transfer function between the input ES-AA ratio (for the tibialis anterior (TA ) and gastrocnemius (GC)) and the force output of the endpoint in the ankle joint in an isometric environment by investigating the frequency characteristics, and finally found that the ankle-joint system was a second-order system with dead time in terms of the ES-AA ratio and foot force.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In