0

Full Content is available to subscribers

Subscribe/Learn More  >

Supernumerary Robotic Fingers: An Alternative Upper-Limb Prosthesis

[+] Author Affiliations
Faye Wu, Harry Asada

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DSCC2014-6017, pp. V002T16A009; 8 pages
doi:10.1115/DSCC2014-6017
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Conventional prosthetic devices substitute lost human limbs with mechanical proxies to enable amputees perform daily chores. We present an alternative approach that may replace or supplement traditional upper-limb prostheses by utilizing and enhancing the functionality of the remaining healthy limb with a new type of wrist-mounted robot: the Supernumerary Robotic (SR) Fingers. These SR Fingers are naturally and implicitly coordinated with the motion of the human fingers to provide assistance in a variety of prehensile tasks that are usually too difficult to carry out with a single hand, such as grasping a large/oddly shaped object or taking the lid off a jar. A novel control algorithm, termed “Bio-Artificial Synergies”, is developed so the SR Fingers can share a work load and adapt to diverse task conditions just like the real fingers do. Through grasp experiments and data analysis, postural synergies were found for a seven-fingered hand comprised of two SR Fingers and five human fingers. The synergy-based control law was then extracted from the experimental data using Partial Least Squares Regression (PLSR) and tested on the SR Finger prototype on a number of common tasks to demonstrate the usefulness and effectiveness of this new class of prosthetic device.

Copyright © 2014 by ASME
Topics: Prostheses , Robotics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In