0

Full Content is available to subscribers

Subscribe/Learn More  >

Resting State EEG Multiscale Entropy Dynamics in Mild Cognitive Impairment and Early Alzheimer’s Disease

[+] Author Affiliations
Joseph McBride, Xiaopeng Zhao

University of Tennessee, Knoxville, TN

Nancy Munro

Oak Ridge National Laboratory, Oak Ridge, TN

Gregory Jicha, Charles Smith, Yang Jiang

University of Kentucky, Lexington, KY

Paper No. DSCC2014-5912, pp. V002T16A004; 5 pages
doi:10.1115/DSCC2014-5912
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Mild cognitive impairment (MCI) is a neurological condition related to early stages of dementia such as Alzheimer’s disease (AD). This study explores non-event-related multiscale entropy (MSE) measures as features for effectively discriminating between normal aging, MCI, and AD participants. Resting EEG records from 48 age-matched participants (mean age 75.7 years) — 15 normal controls (NC), 16 MCI, and 17 early AD — are examined. Multiscale entropy curves are computed for short EEG segments and averaged over the segments. Binary discriminations among the three groups are conducted using support vector machine models. Leave-one-out cross-validation accuracies of 80.7% (p-value <0.0018) for MCI vs. NC, 87.5% (p-value <1.322E−4) for AD vs. NC, and 90.9% (p-value <2.788E−5) for MCI vs. AD are achieved. Results demonstrate influence of cognitive deficits on multiscale entropy dynamics of non-event-related EEG.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In