Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Dynamic Analysis of EEG Using a Stochastic Duffing-van der Pol Oscillator Model

[+] Author Affiliations
Parham Ghorbanian, Subramanian Ramakrishnan, Alan Whitman, Hashem Ashrafiuon

Villanova University, Villanova, PA

Paper No. DSCC2014-5854, pp. V002T16A001; 6 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME


In this work, we model electroencephalography (EEG) signals as the stochastic output of a double Duffing - van der Pol oscillator networks. We develop a novel optimization scheme to match data generated from the model with clinically obtained EEG data from subjects under resting eyes-open (EO) and eyes-closed (EC) conditions and derive models with outputs that show very good agreement with EEG signals in terms of both frequency and information contents. The results, reinforced by statistical analysis, shows that the EEG recordings under EC and EO resting conditions are distinct realizations of the same underlying model occurring due to parameter variations. Furthermore, the EC and EO EEG signals each exhibit distinct nonlinear dynamic characteristics. In summary, it is established that the stochastic coupled nonlinear oscillator network can provide a useful framework for modeling and analysis of EEG signals that are recorded under variety of conditions.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In