Full Content is available to subscribers

Subscribe/Learn More  >

Dissipation-Induced Self-Recovery in Systems on Principal Bundles

[+] Author Affiliations
Tony Dear, Matthew Travers, Howie Choset

Carnegie Mellon University, Pittsburgh, PA

Scott David Kelly

University of North Carolina at Charlotte, Charlotte, NC

Paper No. DSCC2014-6212, pp. V001T11A004; 5 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 1: Active Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4618-6
  • Copyright © 2014 by ASME


The “self-recovery” phenomenon is a seemingly curious property of certain underactuated dissipative systems in which dissipative forces always push the system to a pre-determined equilibrium state dependent on the initial conditions. The systems for which this has been studied are Abelian, with all system velocity interactions due entirely to inertial effects. In this paper we also consider Abelian systems, but in the context of principal bundles, and introduce drag in addition to inertial interactions, allowing us to show that the same conservation that induces self-recovery now depends on the trajectories of the system inputs in addition to initial conditions. We conclude by demonstrating an example illustrating the conditions derived from our proof, along with an observation that the present analysis is insufficient for self-recovery in non-Abelian systems.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In