Dynamic Stability in a Cracked Turbo Blade-Disk PUBLIC ACCESS

[+] Author Affiliations
J. H. Kuang, B. W. Huang

National Sun Yat-Sen University, Kaohsiung, Taiwan

Paper No. 99-GT-411, pp. V004T03A049; 9 pages
  • ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
  • Indianapolis, Indiana, USA, June 7–10, 1999
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7861-3
  • Copyright © 1999 by ASME


Analysis of the stability in a cracked blade-disk system is proposed. The effect of modal localization on the stability in a rotating blade-disk was studied. A crack near the root of a blade is regarded as a local disorder in this periodically coupled blade system. Hamilton’s principle and Galerkin’s method were used to formulate the equations of motion for the cracked blade-disk. The instability regions of this cracked blade-disk system were specified by employing the multiple scales perturbation method. Numerical results indicate that the rotation speed, shroud stiffness and crack depth in the blades affect the stability regions of this mistuned system significantly.

Copyright © 1999 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In