Actively Controlled Bearing Dampers for Aircraft Engine Applications PUBLIC ACCESS

[+] Author Affiliations
John M. Vance

Texas A&M University

Daniel Ying

ABB Power Generation, Inc.

Jorgen L. Nikolajsen

Staffordshire University

Paper No. 99-GT-018, pp. V004T03A004; 10 pages
  • ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
  • Indianapolis, Indiana, USA, June 7–10, 1999
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7861-3
  • Copyright © 1999 by ASME


This paper describes some of the requirements for bearing dampers to be used in an aircraft engine and briefly discusses the pros and cons of various types of dampers that were considered as candidates for active control in aircraft engines. A disk type of electrorheological (ER) damper was chosen for further study and testing. The paper explains how and why the choice was made. For evaluating potential applications to aircraft engines, an experimental development engine (XTE-45) was used as an example for this study.

Like most real aircraft engines, the XTE-45 ran through more than one critical speed in its operating speed range. There are some speeds where damping is desirable and other speeds where it is not. Thus, the concept of a damper with controllable forces appears attractive. The desired equivalent viscous damping at the critical speeds along with the available size envelope were two of the major criteria used for comparing the dampers.

Most previous investigators have considered the ER damper to produce a purely Coulomb type of damping force and this was the assumption used by the present authors in this study. It is shown in a companion paper (Vance and San Andres, 1999), however, that a purely Coulomb type of friction cannot restrain the peak vibration amplitudes at rotordynamic critical speeds and that the equivalent viscous damping for rotordynamics is different from the value derived by previous investigators for planar vibration. Control laws for Coulomb damping are derived in Vance and San Andres, (1999) to achieve minimum rotor vibration amplitudes in a test rig while avoiding large bearing forces over a speed range that includes a critical speed. The type of control scheme required and its effectiveness was another criterion used for comparing the dampers in this paper.

Copyright © 1999 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In