0

Thermodynamic, Environmental and Economic Assessment of Exhaust Gas Recirculation for NOx Reduction in Gas Turbine Based Compressor Station FREE

[+] Author Affiliations
K. K. Botros, G. R. Price

NOVA Research & Technology Corporation, Calgary, AB, Canada

G. Kibrya

TransCanada Pipelines Ltd., Calgary, AB, Canada

Paper No. 99-GT-173, pp. V002T03A004; 9 pages
doi:10.1115/99-GT-173
From:
  • ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Indianapolis, Indiana, USA, June 7–10, 1999
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7859-0
  • Copyright © 1999 by ASME

abstract

A thermodynamic, environmental and economic assessment of an exhaust gas recirculation (EGR) system for NOx reduction has been carried out on an RB211 gas turbine based compressor station. The configured system was evaluated using a commercial process simulation software ASPEN PLUS® for the EGR process, along with a one dimensional model for the prediction of NOx. The assessment was focused on a realistic system of 20% gas recirculation cooled 300 °C with an aerial cooler. Detailed economic analysis based on present value cost per unit mechanical energy (kWh), showed that there is no economic advantage in implementing an EGR system in an existing gas turbine based station. Although the environmental cost was lower with the EGR system, it was offset by the cost of the EGR system itself combined with the additional incremental cost of fuel due to the decrease in the thermal efficiency.

Copyright © 1999 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In