Predictions of NOx Formation Under Combined Droplet and Partially Premixed Reaction of Diffusion Flame Combustors FREE

[+] Author Affiliations
Nader K. Rizk, Ju S. Chin, Andre W. Marshall, Mohan K. Razdan

Rolls-Royce Allison, Indianapolis, IN

Paper No. 99-GT-357, pp. V002T02A059; 8 pages
  • ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Indianapolis, Indiana, USA, June 7–10, 1999
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7859-0
  • Copyright © 1999 by ASME


A methodology is presented in this paper on the modeling of NOx formation in diffusion flame combustors where both droplet burning and partially premixed reaction proceed simultaneously. The model simulates various combustion zones with an arrangement of reactors that are coupled with a detailed chemical reaction scheme. In this model, the primary zone of the combustor comprises a reactor representing contribution from droplet burning under stoichiometric conditions and a mixing reactor that provides additional air or fuel to the primary zone. The additional flow allows forming a fuel vapor/air mixture distribution that reflects the unmixedness nature of the fuel injection process. Expressions to estimate the extent of deviation in fuel/air ratios from the mean value, and the duration of droplet burning under stoichiometric conditions were derived. The derivation of the expressions utilized a data base obtained in a parametric study performed using a conventional gas turbine combustor where the primary zone equivalence ratio varied over a wide range of operation. The application of the developed model to a production combustor indicated that most of the NOx produced under the engine takeoff mode occurred in the primary as well as the intermediate regions. The delay in NOx formation is attributed to the operation of the primary zone under fuel rich conditions resulting in a less favorable condition for NOx formation. The residence time for droplet burning increased with a decrease in engine power. The lower primary zone gas temperature that limits the spray evaporation process coupled with the leaner primary zone mixtures under idle and low power modes increases the NOx contribution from liquid droplet combustion in diffusion flames. Good agreement was achieved between the measured and calculated NOx emissions for the production combustor. This indicates that the simulation of the diffusion flame by a combined droplet burning and fuel vapor/air mixture distribution offers a promising approach for estimating NOx emissions in combustors, in particular for those with significant deviation from traditional stoichiometry in the primary combustion zone.

Copyright © 1999 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In