The Calculation of Thermodynamic Non Equilibrium Combustion Product Compositions FREE

[+] Author Affiliations
C. D. Hurley, M. Whiteman, C. W. Wilson

DERA Pyestock, Farnborough, United Kingdom

Paper No. 99-GT-275, pp. V002T02A046; 15 pages
  • ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Indianapolis, Indiana, USA, June 7–10, 1999
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7859-0
  • Copyright © 1999 by ASME


A method is presented by which the product composition and temperature of constant pressure combustion reactions can be calculated for non equilibrium conditions, by constraining the products free energy and entropy. The calculations for a hydrogen/ oxygen system are compared with chemical kinetic predictions. From the calculated compositions the relationship between free energy and extent of reaction are derived and thence how the individual product mole fractions vary with extent of reaction. The application of these techniques to modelling combustion chemistry is discussed.

Copyright © 1999 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In