Measurement of Transfer Matrices and Source Terms of Premixed Flames FREE

[+] Author Affiliations
Christian Oliver Paschereit, Bruno Schuermans, Wolfgang Polifke, Oscar Mattson

ABB Corporate Research Ltd., Baden, Switzerland

Paper No. 99-GT-133, pp. V002T02A025; 12 pages
  • ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Indianapolis, Indiana, USA, June 7–10, 1999
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7859-0
  • Copyright © 1999 by ASME


An experimental method to determine the thermoacoustic properties of a gas turbine combustor using a lean-premixed low emission swirl stabilized burner is presented. To model thermoacoustic oscillations, a combustion system can be described as a network of acoustic elements, representing for example fuel and air supply, burner and flame, combustor, cooling channels, suitable terminations, etc. For most of these elements, simple analytical models provide an adequate description of their thermoacoustic properties. However, the complex response of burner and flame (involving a three-dimensional flow field, recirculation zones, flow instabilities and heat release) to acoustic perturbations has — at least in a first step — to be determined by experiment. In our approach, we describe the burner as an active acoustical two-port, where the state variables pressure and velocity at the inlet and the outlet of the two port are coupled via a four element transfer matrix. This approach is similar to the “black box” theory in communication engineering. To determine all four transfer matrix coefficients, two test states, which are independent in the state vectors, have to be created. This is achieved by using acoustic excitation by loudspeakers upstream and downstream of the burner, respectively. In addition, the burner might act as an acoustic source, emitting acoustic waves due to an unsteady combustion process. The source characteristics were determined by using a third test state, which again must be independent from the two other state vectors. In application to a full size gas turbine burner, the method’s accuracy was tested in a first step without combustion and the results were compared to an analytical model for the burner’s acoustic properties. Then the method was used to determine the burner transfer matrix with combustion. An experimental swirl stabilized premixed gas-turbine burner was used for this purpose. The treatment of burners as acoustic two-ports with feedback including a source term and the experimental determination of the burner transfer matrix is novel.

Copyright © 1999 by ASME
Topics: Flames
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In