Full Content is available to subscribers

Subscribe/Learn More  >

Performance and Emissions of Acetone-Butanol-Ethanol (ABE) and Gasoline Blends in a Port Fuel Injected Spark Ignition Engine

[+] Author Affiliations
Karthik Nithyanandan

University of Illinois at Urbana-Champaign, Urbana, IL

Chia-fon F. Lee

University of Illinois at Urbana-Champaign, Urbana, ILTsinghua University, Beijing, China

Han Wu

Chang’an University, Xi’an, Shaanxi, China

Jiaxiang Zhang

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. ICEF2014-5644, pp. V001T02A010; 11 pages
  • ASME 2014 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion; Emissions Control Systems
  • Columbus, Indiana, USA, October 19–22, 2014
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4616-2
  • Copyright © 2014 by ASME


Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuels which typically emit fewer pollutants, but also lowers the cost of fuel recovery for each individual component during fermentation. An experiment was conducted using a Ford single-cylinder spark-ignition (SI) research engine to investigate the potential of ABE as an SI engine fuel. Blends of pure gasoline and ABE, ranging from 0% to 80% vol. ABE, were created and the performance and emission characteristics were compared with pure gasoline as the baseline. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxides were used to compare the fuels in terms of combustion byproducts. Experiments were performed at a constant engine speed and a comparison was made on the basis of similar power output (Brake Mean Effective Pressure (BMEP)). In-cylinder pressure data showed that the peak pressure of all the blends was slightly lower than that of gasoline, except for ABE80 which showed a slightly higher and advanced peak relative to gasoline. ABE showed an increase in brake specific fuel consumption (BSFC); while exhaust gas temperature and nitrogen oxide measurements show that ABE combusts at a lower peak temperature. The emissions of unburned hydrocarbons were higher compared to those of gasoline but the CO emissions were lower. Of particular interest is the combined effect of the higher laminar flame speed (LFS) and higher latent heat of vaporization of ABE fuels on the combustion process.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In