Full Content is available to subscribers

Subscribe/Learn More  >

Laboratory Testing of Full-Scale Pipes Partially Embedded in Soil to Study Soil-Pipe Interaction of Offshore Seabed Oil and Gas Pipelines: Initial Observations

[+] Author Affiliations
Ruslan S. Amarasinghe, Dharma Wijewickreme

University of British Columbia, Vancouver, BC, Canada

Hisham T. Eid

Qatar University, Doha, Qatar

Paper No. IPC2014-33308, pp. V004T10A005; 10 pages
  • 2014 10th International Pipeline Conference
  • Volume 4: Production Pipelines and Flowlines; Project Management; Facilities Integrity Management; Operations and Maintenance; Pipelining in Northern and Offshore Environments; Strain-Based Design; Standards and Regulations
  • Calgary, Alberta, Canada, September 29–October 3, 2014
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4613-1
  • Copyright © 2014 by ASME


The geotechnical aspect of the design of off-shore oil and gas pipelines is a challenge due to inherent uncertainties in predicting soil-pipe interaction behaviour. Physical modeling is often sought after to gain insight into such problems. This is especially true for pipelines laid in deep waters that are partially embedded in the seabed. This paper presents initial observations arising from full-scale laboratory simulations of typical soil-pipe interaction scenarios of partially buried steel pipes. Bare and epoxy-coated NPS18 steel pipes, each measuring 2.5 m in length, were separately tested in a soil chamber by simulating: (i) lateral pipe displacement; and (ii) longitudinal pipe displacement, under partial embedment in two idealized soil bed models, i.e., in a coarse-grained soil bed model with full drainage, and a fully-saturated fine-grained soil bed model with partial drainage.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In