Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Design Premises and Uncertainties on the Thermo-Mechanical Behavior of a Subsea Pipeline

[+] Author Affiliations
Bruno Reis Antunes, Rafael Familiar Solano, Alexandre Hansen

PETROBRAS, Rio de Janeiro, Brasil

Paper No. IPC2014-33084, pp. V004T10A002; 9 pages
  • 2014 10th International Pipeline Conference
  • Volume 4: Production Pipelines and Flowlines; Project Management; Facilities Integrity Management; Operations and Maintenance; Pipelining in Northern and Offshore Environments; Strain-Based Design; Standards and Regulations
  • Calgary, Alberta, Canada, September 29–October 3, 2014
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4613-1
  • Copyright © 2014 by ASME


Buckle formation process is a key subject for the design of subsea pipelines laid on the seabed and operating under high pressure and high temperature (HP/HT) conditions. When the controlled lateral buckling methodology is adopted triggers are placed along pipeline route in order to increase the buckle formation probability in specific locations, sharing pipeline expansion between these sites and reducing the level of stress and strain in each buckle.

Despite of its importance, buckle formation process is influenced by several parameters such as the seabed bathymetry, engineered triggers, lateral out-of-straightness (OOS) and pipe-soil interaction. While the first two items above can be defined with reasonable accuracy at previous stages of design, lateral OOS will only be known with tolerable confidence after pipeline installation. The level of uncertainty related to pipe-soil interaction is also considerable since pipeline embedment and friction factors are estimated using equations that include empirical correlations and field collected data. In addition these parameters are influenced by the installation process. Due to these uncertainties, conservative premises are usually assumed in order to obtain a robust pipeline thermo-mechanical design.

After pipeline installation and/or start of operation an investigation can be performed in order to confirm the assumptions considered in the design. This paper presents a comparison of premises adopted during design stage of a pipeline based on the controlled lateral buckling methodology and the feedback obtained with the post-lay survey performed. After a brief introduction, pipeline embedment, global buckling at crossings, lateral OOS and sleepers’ height are some of the subjects addressed. Finally, conclusions and recommendations are presented in order to support future similar projects.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In