Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of PIR to PIPESAFE-Based 1% Lethality Zones for Natural Gas Pipelines

[+] Author Affiliations
Aleksandar Tomic, Shahani Kariyawasam

TransCanada Corporation, Calgary, AB, Canada

Paper No. IPC2014-33477, pp. V003T12A020; 7 pages
  • 2014 10th International Pipeline Conference
  • Volume 3: Materials and Joining; Risk and Reliability
  • Calgary, Alberta, Canada, September 29–October 3, 2014
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4612-4
  • Copyright © 2014 by ASME


A lethality zone due to an ignited natural gas release is often used to characterize the consequences of a pipeline rupture. A 1% lethality zone defines a zone where the lethality to a human is greater than or equal to 1%. The boundary of the zone is defined by the distance (from the point of rupture) at which the probability of lethality is 1%. Currently in the gas pipeline industry, the most detailed and validated method for calculating this zone is embodied in the PIPESAFE software. PIPESAFE is a software tool developed by a joint industry group for undertaking quantitative risk assessments of natural gas pipelines. PIPESAFE consequence models have been verified in laboratory experiments, full scale tests, and actual failures, and have been extensively used over the past 10–15 years for quantitative risk calculations. The primary advantage of using PIPESAFE is it allows for accurate estimation of the likelihood of lethality inside the impacted zone (i.e. receptors such as structures closer to the failure are subject to appropriately higher lethality percentages).

Potential Impact Radius (PIR) is defined as the zone in which the extent of property damage and serious or fatal injury would be expected to be significant. It corresponds to the 1% lethality zone for a natural gas pipeline of a certain diameter and pressure when thermal radiation and exposure are taken into account. PIR is one of the two methods used to identify HCAs in US (49 CFR 192.903).

Since PIR is a widely used parameter and given that it can be interpreted to delineate a 1% lethality zone, it is important to understand how PIR compares to the more accurate estimation of the lethality zones for different diameters and operating pressures. In previous internal studies, it was found that PIR, when compared to the more detailed measures of the 1% lethality zone, could be highly conservative. This conservatism could be beneficial from a safety perspective, however it is adding additional costs and reducing the efficiency of the integrity management process. Therefore, the goal of this study is to determine when PIR is overly conservative and to determine a way to address this conservatism.

In order to assess its accuracy, PIR was compared to a more accurate measure of the 1% lethality zone, calculated by PIPESAFE, for a range of different operating pressures and line diameters. Upon comparison of the distances calculated through the application of PIR and PIPESAFE, it was observed that for large diameters pipelines the distances calculated by PIR are slightly conservative, and that this conservativeness increases exponentially for smaller diameter lines. The explanation for the conservatism of the PIR for small diameter pipelines is the higher wall friction forces per volume transported in smaller diameter lines. When these higher friction forces are not accounted for it leads to overestimation of the effective outflow rate (a product of the initial flow rate and the decay factor) which subsequently leads to the overestimation of the impact radius. Since the effective outflow rate is a function of both line pressure and diameter, a simple relationship is proposed to make the decay factor a function of these two variables to correct the excess conservatism for small diameter pipelines.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In