0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Corrosion Measurement Error on a Safety Risk Assessment: A TransGas Case Study

[+] Author Affiliations
Daryl Bandstra

C-FER Technologies, Edmonton, AB, Canada

Corey Gorrill

TransGas Ltd., Regina, SK, Canada

Paper No. IPC2014-33471, pp. V003T12A018; 7 pages
doi:10.1115/IPC2014-33471
From:
  • 2014 10th International Pipeline Conference
  • Volume 3: Materials and Joining; Risk and Reliability
  • Calgary, Alberta, Canada, September 29–October 3, 2014
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4612-4
  • Copyright © 2014 by ASME

abstract

The risk of pipeline failure is a measure of the state of knowledge of the pipeline; improved knowledge of the pipeline reduces the uncertainty and therefore can reduce the associated risk. Specifically for corrosion defects, the knowledge of the number and size of defects is often obtained using in-line inspection tools which have uncertainty associated with their measurement capabilities. Quantitative Risk Assessment (QRA) is a methodology that objectively assesses a range of pipeline integrity threats including the threat of corrosion failure. QRA can incorporate the impact of significant sources of analysis uncertainty, such as feature sizing in risk estimates. This paper discusses an application of QRA used to evaluate the operating risk of high pressure transmission pipeline segments in the TransGas system. Specific examples are described in which the inspection tool sizing uncertainty was shown to exert a significant influence on the calculated risk levels.

In carrying out the analysis, the failure probability models selected were dependent on the nature of the integrity threat and the type of information available for each pipeline. For the assessment of corrosion integrity, the results of in-line inspections were used directly in determining failure likelihood. For the other threats including equipment impact, geotechnical hazards, manufacturing cracks and stress corrosion cracking, the probability of failure was estimated from historical failure rates with adjustments to reflect line-specific conditions. Failure consequences were estimated using models that quantify the safety implications of loss of containment events. Using these models, safety risk measures were calculated along the length of each pipeline. The results of the analysis show the benefit of the use of inspection technologies with improved sizing accuracy, in terms of reduction in expected operating risk.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In