0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of X90 and X100 Steel Grades for Seamless Linepipe Products

[+] Author Affiliations
Diana Toma, Dorothee Niklasch, Denise Mahn, Ashraf Koka

Vallourec & Mannesmann Tubes Germany GmbH, Düsseldorf, Germany

Silke Harksen

Vallourec Deutschland GmbH, Düsseldorf, Germany

Paper No. IPC2014-33099, pp. V003T07A027; 7 pages
doi:10.1115/IPC2014-33099
From:
  • 2014 10th International Pipeline Conference
  • Volume 3: Materials and Joining; Risk and Reliability
  • Calgary, Alberta, Canada, September 29–October 3, 2014
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4612-4
  • Copyright © 2014 by ASME

abstract

The general trend in oil and gas industry gives a clear direction towards the need for high strength grades up to X100. The exploration in extreme regions and under severe conditions, e.g. in ultra deep water regions also considering High Temperature/High Pressure Fields or arctic areas, becomes more and more important with respect to the still growing demand of the world for natural resources. Further, the application of high strength materials enables the possibility of structure weight reduction which benefits to materials and cost reduction and increase of efficiency in the pipe line installation process.

To address these topics, the development of such high strength steel grades with optimum combination of high tensile properties, excellent toughness properties and sour service resistivity for seamless quenched and tempered pipes are in the focus of the materials development and improvement of Vallourec.

This paper will present the efforts put into the materials development for line pipe applications up to grade X100 for seamless pipes manufactured by Pilger Mill. The steel concept developed by Vallourec over the last years [1,2] was modified and adapted according to the technical requirements of the Pilger rolling process. Pipes with OD≥20″ and wall thickness up to 30 mm were rolled and subsequent quenched and tempered. The supportive application of thermodynamic and kinetic simulation techniques as additional tool for the material development was used. Results of mechanical characterization by tensile and toughness testing, as well as microstructure examination by light-optical microscopy will be shown. Advanced investigation techniques as scanning electron microcopy and electron backscatter diffraction are applied to characterize the pipe material up to the crystallographic level. The presented results will demonstrate not only the effect of a well-balanced alloying concept appointing micro-alloying, but also the high sophisticated and precise thermal treatment of these pipe products.

The presented alloying concept enables the production grade X90 to X100 with wall thickness up to 30 mm and is further extending the product portfolio of Vallourec for riser systems for deepwater and ultra-deep water application [1, 3, 4].

Copyright © 2014 by ASME
Topics: Steel

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In