0

Full Content is available to subscribers

Subscribe/Learn More  >

Large Scale Test Apparatus to Test External Leak Detection Technologies

[+] Author Affiliations
Chris Apps

C-FER Technologies, Edmonton, AB, Canada

Istemi Ozkan

National Research Council Canada, Ottawa, ON, Canada

Tania Rizwan, Marzie Derakhshesh, Scott Medynski

Enbridge Pipelines Inc., Edmonton, AB, Canada

Paper No. IPC2014-33579, pp. V001T09A027; 8 pages
doi:10.1115/IPC2014-33579
From:
  • 2014 10th International Pipeline Conference
  • Volume 1: Design and Construction; Environment; Pipeline Automation and Measurement
  • Calgary, Alberta, Canada, September 29–October 3, 2014
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4610-0
  • Copyright © 2014 by ASME

abstract

When it comes to evaluating traditional computational leak detection technologies pipeline operators have a suite of simulated testing methods available. In the last several years however External Leak Detection Technologies have become more mature and potentially could provide operators with another layer of leak detection with more sensitivity than seen in traditional methods. The challenge with these technologies is in the evaluation of their sensitivity, reliability, and robustness. ENBRIDGE INC (Enbridge) and C-FER Technologies 1999 Inc. (C-FER) begun a comprehensive study to assess the state-of-the-art external, continuously distributed sensors for leak detection in early 2012.

Initially, a technology review was undertaken to identify commercial, off-the-shelf technologies with the potential to detect small leaks of oil from buried pipelines. From this literature review, four technologies were identified; Distributed Temperature Sensing (DTS), Distributed Acoustic Sensing (DAS), Vapor Sensing Tubes (VST), and Hydrocarbon Sensing Cables (HSC). All four methods require proprietary materials and technology, which have had limited independent testing efforts to date. To evaluate these four leak detection methods and their vendors in an objective way, Enbridge and C-FER initiated the design and construction of a large-scale External Leak Detection Experimental Research apparatus (ELDER) that can accommodate a full-size segment of pipeline within a trench, at the same scale used in pipeline construction in North America. An instrumented pipe segment is buried in the trench with sensing cables laid alongside. The apparatus generates leaks with controlled variables including rate, pressure and temperature, and at various locations to accurately represent pipeline leaks. This paper summarizes the literature review on the four selected leak detection technologies that were identified as candidates for large-scale evaluation. The discussion will also include features of the ELDER apparatus, and re-engineered pipeline construction techniques that were required to accurately represent a full-scale pipeline trench within a laboratory environment.

Copyright © 2014 by ASME
Topics: Leakage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In