0

Full Content is available to subscribers

Subscribe/Learn More  >

Phase Control of a Bio-Inspired Meta-Structural Locomotion Robot

[+] Author Affiliations
Hongbin Fang

University of Michigan, Ann Arbor, MITongji University, Shanghai, China

Chenghao Wang, Suyi Li, K. W. Wang

University of Michigan, Ann Arbor, MI

Jian Xu

Tongji University, Shanghai, China

Paper No. SMASIS2014-7745, pp. V002T06A018; 9 pages
doi:10.1115/SMASIS2014-7745
From:
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4615-5
  • Copyright © 2014 by ASME

abstract

This research investigates the rectilinear locomotion of a meta-structural robot inspired by the earthworm. First of all, an equivalent multi-segment model of the meta-structural locomotion robot is derived. By the method of averaging, the robot’s average steady-state velocity is obtained, which is a function of the phase differences among segments. Then a novel locomotion control scheme of adjusting actuation phases is proposed for the robot. It is shown that such control of the phase differences among actuators can significantly tailor not only the magnitude but also the direction of the robot’s average steady-state velocity. Locomotion tests with equal phase difference among segments are carried out on the robot prototype in a horizontal pipe. The predicted phase-velocity relationship is verified, and it is shown that the proposed control is more effective than the more traditional peristaltic locomotion gaits. The presented earthworm-like robot belongs to the general class of metastructures, the concept of synthesizing adaptive structures via modular element design and integration. This study lays the foundation for understanding and advancing the properties of such meta-structural locomotion robots.

Copyright © 2014 by ASME
Topics: Robots , Biomimetics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In