Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Theoretical Investigation of the Giant MR-Effect

[+] Author Affiliations
Christian Hegger, Jürgen Maas

Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany

Paper No. SMASIS2014-7691, pp. V001T03A037; 9 pages
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME


This contribution deals with the theoretical and experimental investigation of the giant MR-effect. The giant MR-effect can be utilized to increase the yield stress of magnetorheological fluids (MRF). To obtain a boost of the yield stress the MRF has to be normally compressed while it is exposed to a magnetic field in order to create stronger particle structures. For the experimental investigation a MRF test actuator with an conical shear gap is designed, enabling an adjustment of the shear gap’s height by applying a compressing normal force. The experimental investigation points out that a potentially increase of the yield stress can be achieved on the one hand. On the other hand it is dependent on the magnetic field strength during the compression as well as on the shear rate and shear strain. The results are used to motivate a modeling approach which combines the rheological behavior with tribological effects. The validation of the modeling approach shows a good accordance to the behavior of the physical investigated giant MR-effect.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In