Full Content is available to subscribers

Subscribe/Learn More  >

Model Development for Dynamic Energy Conversion in Post-Buckled Multi-Stable Slender Columns

[+] Author Affiliations
Wassim Borchani, Nizar Lajnef, Rigoberto Burgueño

Michigan State University, East Lansing, MI

Paper No. SMASIS2014-7595, pp. V001T03A023; 6 pages
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME


Broadband piezoelectric energy harvesting solutions from ambient loading have been extensively studied with the purpose of increasing the efficiency of vibration-based harvesters. Most of the previously developed methods focus on the transducer’s properties and configurations, and require vibration input excitations. In contrast, we have previously experimentally shown a mechanical energy concentrator system that exploits the quasi-static input deformations (strains) generated within the structure and induces an amplified amplitude and frequency up-converted response. The tested energy converting devices transform low-amplitude and low-rate service strains into an amplified vibration input to the piezoelectric transducer. The snap-through behavior of bilaterally constrained columns was used as the mechanism for energy concentration. This paper presents a theoretical model, based on energy method, for the post-buckling behavior of a bilaterally constrained slender column under quasi-static axial loadings. The total potential energy of the buckled elastic element is the sum of the potential energies due to bending, compression and external applied force. The transverse deflection is limited by the lateral constraints. Therefore a constrained minimization problem of the total potential energy is solved to determine the equilibrium configurations. Equilibrium transitions are correlated to the changes in the magnitude of the weight coefficients that define the contribution of buckling modes to the deflected shape. Transition states are defined in terms of the axial displacements, axial forces, column shape, and energies stored in the system.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In