Full Content is available to subscribers

Subscribe/Learn More  >

MRE-Based Adaptive-Tuned Dynamic Absorber With Self-Sensing Function for Vibration Control of Structures

[+] Author Affiliations
Toshihiko Komatsuzaki, Yoshio Iwata

Kanazawa University, Kanazawa, Ishikawa, Japan

Toshio Inoue

Honda R&D Co., Ltd., Haga, Tochigi, Japan

Paper No. SMASIS2014-7468, pp. V001T03A011; 6 pages
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME


Magneto-rheological elastomer (MRE) is known as class of smart materials whose elastic property can be varied by the applied external magnetic field. For the use of semi-active vibration control, any kind of external sensor such as accelerometer or displacement sensor is usually used to monitor the real-time response of structures while leaving cost, proper installation and maintenance problems for real applications. In addition to the field-dependent stiffness change property of MRE, the electrical resistance of the composite is also changed by the induced strain within the elastomer providing a new self-sensing feature as a multifunctional material. In the present study, a novel dynamic vibration absorber having self-sensing function and adaptability using Magneto-rheological elastomer is developed. The natural frequency of the absorber is instantaneously tuned to a dominant frequency extracted from the strain signal. The damping performance of the absorber is investigated by applying the absorber to a fundamental base-excited 1-dof vibration system. Investigations show that the vibration of the target structure exposed to a non-stationary disturbance can be satisfactorily reduced by the proposed frequency-tunable dynamic absorber without the use of an external sensor, at the exceeding performance in comparison to conventional passive-type dynamic absorber.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In