Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Magneto-Active Elastomer Composites Using the Finite Element Method

[+] Author Affiliations
Robert Sheridan, Carrie Tedesco, Paris von Lockette, Mary Frecker

Pennsylvania State University, State College, PA

Paper No. SMASIS2014-7705, pp. V001T01A032; 6 pages
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME


Magneto-active elastomers (MAE) are a new branch of smart materials that consist of hard-magnetic particles such as barium ferrite in an elastomer matrix. Under the application of a uniform magnetic field, the MAE material undergoes large deformation as the material bends due to magnetic torques acting on the distribution of hard-magnetic particles. This behavior demonstrates the potential of MAEs to act as remote actuators. MAEs vary from magnetorheological elastomers (MRE) which use soft-magnetic iron particles in place of the hard-magnetic particles and they are driven by magnetic interactions between particles.

In this work, MAEs were fabricated using 30% v/v 325 mesh M-type barium ferrite (BaM) particles in Dow Corning HS II silicone elastomers. Prior to curing, the samples were placed in a uniform (∼2 Tesla) magnetic field to align the magnetic particles and produce a magnetization oriented in the direction of the applied magnetic field. The specimens were bonded to a passive poldymethylsiloxane (PDMS) substrate to form a two-segment accordion structure where the MAEs with magnetization, M, were placed in opposing orientations a prescribed distance apart. The application of a uniform magnetic field perpendicular to the magnetization of the undeformed MAEs would result in a bend (on the PDMS) that is dependent upon the orientation of the magnetic particles and the direction of the applied field. This behavior of the composite structure highlights the ability of the MAE material to perform work.

Experimental testing of the MAEs used a two-segment accordion structure with fixed boundary-conditions on both ends of the PDMS substrate and a uniform magnetic field was applied to the structure. The resulting deformation roughly represented either a mountain or valley fold (dependent upon the orientation of the applied field). The resulting axial force was observed and compared to computational simulations which utilized numerical techniques to develop approximate solutions. This procedure was repeated with a prescribed displacement on one of the two fixed boundary conditions to induce bending prior to the application of a uniform magnetic field. Results show a decrease in magnetic work potential with increases in the aforementioned prescribed displacement; results also show an increase in magnetic work potential with increases in the applied magnetic field.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In