0

Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication and Performance of Magneto-Active Elastomer Composite Structures

[+] Author Affiliations
Paris von Lockette

Pennsylvania State University, State College, PA

Paper No. SMASIS2014-7590, pp. V001T01A019; 7 pages
doi:10.1115/SMASIS2014-7590
From:
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME

abstract

This works discusses the use of magneto-active elastomer (MAE) as an active material for use in origami engineering and other applications where transformation of a composite structure between target shapes is desired. Magneto-active elastomer, as the name implies, consists of magnetic powders dispersed in an elastomer (polymer) fluid which is subsequently cured in the presence of a magnetic field to produce a net remanent magnetization in the cured solid. Having their own internal magnetization, MAE materials are affected by both magnetic forces, due to gradients in local field, as well as magnetic torques resulting from the cross product of the field and the magnetization. In this fashion, patches of MAE material, distributed throughout a non-magnetic elastomeric structure, act as distributed actuators producing deformed shapes. The use of rare-Earth magnets as the magnetic actuation elements is also investigated. The work highlights experimental efforts to develop structures with integrated MAE patches and rare-Earth magnets of varying magnetization orientations using multi-step casting processes and 3D printing techniques. Initial results show success at generating active structures having locally oriented MAE patches and magnets in accordion, water bomb and and Miru fold patterns.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In