Full Content is available to subscribers

Subscribe/Learn More  >

Synthesis and Characterization of a Bio-Compatible Shape Memory Polymer Blend for Biomedical and Clinical Applications

[+] Author Affiliations
Janice J. Song, Jennifer Kowalski, Hani E. Naguib

University of Toronto, Toronto, ON, Canada

Paper No. SMASIS2014-7452, pp. V001T01A008; 6 pages
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME


Shape memory polymers (SMP) are a class of stimuli-responsive materials that are able to respond to external stimulus such as heat by altering their shape. Bio-compatible SMPs have a number of advantages over existing SMP materials and are being studied extensively for biomedical and clinical applications. Polymer blending has proved to be an effective method to improve the mechanical properties of polymers (such as tensile strength and toughness) as well as shape memory properties. In this study, we investigate the effect of blending two bio compatible polymers, thermoplastic polyurethane (TPU), a polymer with a high toughness and percent elongation, and poly-lactic acid (PLA), a stiff and strong polymer. The thermal, mechanical and thermo-mechanical (shape memory) properties of TPU/PLA blends were characterized in the following weight percent compositions: 80/20, 65/35, and 50/50 TPU/PLA. The TPU/PLA SMP blending was achieved with melt-blending and the tensile samples were fabricated with compression molding. The mechanical properties of each blend were studied at three different temperatures. The following thermo-mechanical (or shape memory) properties were also studied at each temperature: the shape fixity rate (Rf), shape recovery rate (Rr) and the effect of recovery temperature on the shape memory behavior. The microstructure of the polymer blends were investigated with an environmental scanning electron microscope (SEM). The results showed that the glass transition temperatures of the blends were similar to pure PLA. The toughness of the SMP blend increased with increasing TPU concentration and the tensile strength of the blend increased with PLA composition. The shape fixity rate of the TPU/PLA blend increased with increasing TPU content and the shape recovery rate increased with increasing deformation and recovery temperature. The various TPU/PLA SMP blends characterized in this study have the potential to be developed further for specific biomedical and clinical applications.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In