Full Content is available to subscribers

Subscribe/Learn More  >

Ultra-Long Barium Titanate Nanowire Arrays for Low Frequency Energy Harvesting Applications

[+] Author Affiliations
Aneesh Koka, Henry A. Sodano

University of Florida, Gainesville, FL

Paper No. SMASIS2014-7426, pp. V001T01A002; 7 pages
  • ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation
  • Newport, Rhode Island, USA, September 8–10, 2014
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4614-8
  • Copyright © 2014 by ASME


Piezoelectric nanowires (NWs) have recently attracted immense interest due to their excellent electro-mechanical coupling behavior that can efficiently enable conversion of low-intensity mechanical vibrations for powering or augmenting batteries of biomedical devices and portable consumer electronics. Specifically, nano-electromechanical systems (NEMS) composed of piezoelectric NWs offer an exciting potential for energy harvesting applications due to their enhanced flexibility, light weight, and compact size. Compared to the bulk form, high aspect ratio NWs can exhibit higher deformation to produce an enhanced piezoelectric response at a lower stress level. NEMS made of conventional semiconducting vertically aligned, ZnO NW arrays have been investigated thoroughly for energy harvesting; however, ZnO has a lower piezoelectric coupling coefficient as compared to many ferroelectric ceramics which limits its piezoelectric performance. Amidst lead-free ferroelectric materials, environmentally-friendly barium titanate (BaTiO3) possesses one of the highest piezoelectric strain coefficients and thus can enable greater energy transfer when used in vibrational energy harvesters. In this paper, a novel NEMS energy harvester is fabricated using ultra-long (∼40 μm long), vertically aligned BaTiO3 NW arrays which has a low resonant frequency (below 200 Hz) and its AC power harvesting capacity from low amplitude base vibrations (0.25 g) is demonstrated. The design and fabrication of low resonant frequency vibrational energy harvesters has been challenging in the field of MEMS/NEMS since the high stiffness of the structures results in resonant frequency often greater than 1 kHz. However, ambient mechanical vibrations usually exist in the 1 Hz to 1 kHz range and thus highly complaint ultra-long, NW arrays are beneficial to enable efficient energy conversion. Through the use of this newly developed synthesis process for the growth of highly compliant, ultra-long BaTiO3 NW arrays, it is shown that piezoelectric NWs based NEMS energy harvesters capable of harnessing this low frequency ambient vibrational energy can be conceived.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In