Full Content is available to subscribers

Subscribe/Learn More  >

3-D Dynamic Simulation on Fluid-Structure Interaction of Air Flowing Around Prism

[+] Author Affiliations
Junlei Wang, JingYu Ran, Lin Ding, Li Zhang

Chongqing University, Chongqing, China

Paper No. POWER2014-32121, pp. V002T14A003; 7 pages
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME


In this paper, a new method of generating power by “wind-induced vibration” (WIV). A lead zirconate titanate (PZT) beam which has a very high power density is installed on the bluff body which will have WIV with the bluff body has been explored. Both numerical computation and experimental work have been taken to measure the capacity of the power generating system. Two different shapes of bluff bodies have been tested. In numerical section, the lift and drag coefficient and the vortex shedding frequency have been computed to verify how the dimensionless parameter Vr affects the fluid field. An one-degree-freedom system has been added to describe the wind-induced vibration, and the vibrational frequency and amplitude of the vibration have been monitored. The fluid-structure interaction has been solved by a hybrid method of finite volume method (FVM) and finite element method (FEM). From numerical simulation, the conclusions can be given that as the non-dimensionalised mass m* is about 780, the vortex induced vibration (VIV) response of a single cylinder is quite different comparing with Govardhan&Williamson. Then a wind tunnel test has been taken to measure the voltage output of the PZT, and we have gotten a result quite close to the data of numerical method.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In