0

Full Content is available to subscribers

Subscribe/Learn More  >

Syngas Combustion Analysis Using an Experimental and Numerical Approach

[+] Author Affiliations
André F. L. Teixeira, Sandra C. F. Teixeira

University of Trás-os-Montes and Alto Douro, Vila Real, Portugal

Nuno T. D. Couto

University of Trás-os-Montes and Alto Douro, Vila Real, PortugalUniversity of Porto, Porto, Portugal

Paper No. POWER2014-32092, pp. V002T14A001; 7 pages
doi:10.1115/POWER2014-32092
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

The present study addresses SYNGAS combustion in static chamber, using both experimental and numerical approaches, in order to derive the quenching distance and heat flux in laminar syngas–air flames. Three typical mixtures of H2, CO, CH4, CO2 and N2 are considered as representative of the syngas coming from wood gasification, and its laminar combustion will be performed in a static spherical vessel. A two dimensional CFD model is used and validated under experimental runs. The classical Woschni model based on the hypotheses of forced convection and the Rivère model based on kinetic theory of gases are included in the CFD approach. The paper considers two different approaches for chemical reactions: the use of eight reactions and the multizone model. Temperature and pressure analysis is also being carried out. The numerical results are in good agreement with experimental ones. This study could be very useful in predicting the physical conditions of the quenching distance where the measurement is not possible such as in engines and the possibility of using this model in internal combustion engines.

Copyright © 2014 by ASME
Topics: Combustion , Syngas

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In