0

Full Content is available to subscribers

Subscribe/Learn More  >

Model Based Performance Correction Methodology — A Case Study

[+] Author Affiliations
Koldo Zuniga, Joao Balaco

General Electric Company, Power & Water, Glasgow, UK

Thomas P. Schmitt

General Electric Company, Power & Water, Fairview, NC

Herve Clement

General Electric Company, Power & Water, Belfort, France

Paper No. POWER2014-32184, pp. V002T13A005; 5 pages
doi:10.1115/POWER2014-32184
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

Correction curves are of great importance in the performance evaluation of heavy duty gas turbines (HDGT). They provide the means by which to translate performance test results from test conditions to the rated conditions. The correction factors are usually calculated using the original equipment manufacturer (OEM) gas turbine thermal model (a.k.a. cycle deck), varying one parameter at a time throughout a given range of interest. For some parameters bi-variate effects are considered when the associated secondary performance effect of another variable is significant. Although this traditional approach has been widely accepted by the industry, has offered a simple and transparent means of correcting test results, and has provided a reasonably accurate correction methodology for gas turbines with conventional control systems, it neglects the associated interdependence of each correction parameter from the remaining parameters. Also, its inherently static nature is not well suited for today’s modern gas turbine control systems employing integral gas turbine aero-thermal models in the control system that continuously adapt the turbine’s operating parameters to the “as running” aero-thermal component performance characteristics.

Accordingly, the most accurate means by which to correct the measured performance from test conditions to the guarantee conditions is by use of Model-Based Performance Corrections, in agreement with the current PTC-22 and ISO 2314, although not commonly used or accepted within the industry.

The implementation of Model-based Corrections is presented for the Case Study of a GE 9FA gas turbine upgrade project, with an advanced model-based control system that accommodated a multitude of operating boundaries. Unique plant operating restrictions, coupled with its focus on partial load heat rate, presented a perfect scenario to employ Model-Based Performance Corrections.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In