0

Full Content is available to subscribers

Subscribe/Learn More  >

Earthquake Experience Data Point to Benefit of Diverse Backup Power

[+] Author Affiliations
David J. Calhoun, Mark A. Gake

Black & Veatch, Overland Park, KS

Paper No. POWER2014-32059, pp. V002T12A002; 7 pages
doi:10.1115/POWER2014-32059
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

Operating nuclear power plants typically have backup electrical power supplied by diesel generators. Although backup power systems are designed with redundant trains, each capable of supplying the power requirements for safe shutdown equipment, there is a common-mode seismic failure risk inherent in these customary backup power arrangements. In an earthquake, multiple equipment trains with similar, if not identical, components located side-by-side are exposed to inertial forces that are essentially identical. In addition, because of their similar subcomponent configurations, seismic fragilities are approximately equal. In that case, the probability of multiple backup power system failures during an earthquake is likely to be dependent on, and nearly the same as, the individual seismic failure probability of each equipment train.

Post-earthquake inspections at conventional multiple unit power stations over the last 40 years identified this common-mode seismic failure risk long before the tsunami-related common-mode failures of diesel generators at Fukushima Daiichi in March 2011. Experience data from post-earthquake inspections also indicate that failure probabilities of diverse sets of power generation equipment are independent and inherently less susceptible to common-mode failures.

This paper demonstrates that employing diverse backup power designs will deliver quantifiable improvements in electrical system availability following an earthquake. These improvements are illustrated from available literature of post-earthquake inspection reports, along with other firsthand observations. A case study of the seismic performance of similarly configured electrical power generation systems is compared to the performance of diverse sets of electrical power systems. Seismic probabilistic risk analyses for several system configurations are presented to show the benefit of improved post-earthquake availability that results from designing new backup power systems with greater diversity.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In