0

Full Content is available to subscribers

Subscribe/Learn More  >

Wet, Dry, and Hybrid Heat Rejection System Impacts on the Economic Performance of a Thermoelectric Power Plant Subjected to Varying Degrees of Water Constraint

[+] Author Affiliations
Thomas P. Carter, James W. Furlong

Johnson Controls, Inc., Waynesboro, PA

Sean P. Bushart, Jessica Shi

Electric Power Research Institute, Palo Alto, CA

Paper No. POWER2014-32051, pp. V002T10A002; 10 pages
doi:10.1115/POWER2014-32051
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

The reduction of water consumption and use is emerging as a top priority for all types of thermoelectric power plants. In the United States, thermoelectric power production accounts for approximately 41% of freshwater withdrawals [1] and 3% of overall fresh water consumption. [2] On the basis of responses to a 2011 Electric Power Research Institute (EPRI) Request for Information [3], the feasibility study [4,5,6,7] of a Thermosyphon Cooler Hybrid System (TCHS) [8], proposed by Johnson Controls, was funded under EPRI’s Technology Innovation (TI) Water-Conservation Program. The objective of this project was to further develop the TCHS design concept for larger scale power plant applications and then perform a thorough technical and economic feasibility evaluation of the TSC Hybrid System and compare it to a variety of other competitive heat rejection systems.

The Thermosyphon Cooler Hybrid System reduces power plant cooling tower evaporative water loss by pre-cooling the condenser loop water through a dry cooling process employing an energy efficient, naturally recirculating refrigerant loop. This paper details the results of a detailed feasibility study that was conducted to compare the cost and performance of the TCHS to a number of other potential wet, dry, and hybrid thermoelectric power plant heat rejection systems operating under varying degrees of water constraint. Installed system cost estimates were developed for the base all wet cooling tower systems, TCHS’s of varying sizes, air-cooled condenser (ACC) hybrid systems of varying sizes, and all dry ACC systems.

Optimized all wet cooling tower and all dry ACC system configurations were developed for five different climatic locations. A comprehensive power plant simulation program that evaluated the fuel and water requirements of the power plants equipped with the different heat rejection systems across the weather conditions associated with all 8,760 hours of a typical meteorological year was developed and then an extensive array of simulations were run each location. The summary data were organized in a separate interactive dynamic system comparison summary program to allow users to gain further insight into the relationships between the various heat rejection systems and the sensitivity of the results to changes in key input assumptions.

This paper details the data presented in the interactive dynamic system comparison summary program. This program displays the key metrics of the Annual Net Cost of Power Production, the Annual Net Power Plant Profit, the Annual Operating Profit, and the Internal Rate of Return as a function of the Percent Annual Water Savings Required for the various heat rejection systems at each of the five studied climatic locations studied. Key results and conclusions are presented.

Copyright © 2014 by ASME
Topics: Heat , Power stations , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In