0

Full Content is available to subscribers

Subscribe/Learn More  >

Cost Performance Tradeoff Study of Low-Carbon System Concepts

[+] Author Affiliations
Navid Goudarzi

University of Maryland, Baltimore County, Baltimore, MD

Alex Pavlak

Future of Energy Initiative, Severna Park, MD

Paper No. POWER2014-32173, pp. V002T09A015; 9 pages
doi:10.1115/POWER2014-32173
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

Achieving higher emission reductions on one hand and employing lower cost concepts on the other hand are desirable in designing future power generator systems. Hence, interdisciplinary studies in a form of system concept modeling should be employed to conceptualize and construct economic and efficient low-carbon system concepts. The concept modeling starts with simple idealized models that preserve the key structural features of a system and adds complex features in the following stages to elucidate principles, relationships, and interfaces. For wind systems, the essential features for concept modeling are wind and load variations, and the main goal is to obtain the cost of electricity delivered by the system as a function of wind penetration (emission reduction); more complex features (storage, photovoltaic, transmission, etc.) are added in the following stages. In this work, an interdisciplinary concept modeling is provided to estimate the magnitude of cost versus performance using the wind/load data from Pennsylvania New Jersey Maryland Interconnection (PJM) LLC, and cost estimations published by the Energy Information Agency. The results show that system total cost increases modestly at low penetration, and it increases more rapidly when wind curtailment becomes significant. Eventually storage becomes cheaper than curtailment. The key question that should be answered in this modeling is the magnitude of electricity cost for high penetration, low emission systems.

Copyright © 2014 by ASME
Topics: Carbon , Tradeoffs

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In