Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Full-Scale-Lab-Validated Dynamic Simulink© Model for a Stand-Alone Wind-Powered Microgrid

[+] Author Affiliations
Nicholas T. Janssen, Rorik A. Peterson, Richard W. Wies

University of Alaska, Fairbanks, Fairbanks, AK

Paper No. POWER2014-32035, pp. V002T09A004; 8 pages
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME


Isolated hybrid wind microgrids operate within three distinct modes, depending on the wind resources and the consumer grid demand: diesel-only (DO), wind-diesel (WD) and wind-only (WO). Few successful systems have been shown to consistently and smoothly transition between wind-diesel and wind-only modes. The University of Alaska – Fairbanks Alaska Center for Energy and Power (ACEP) has constructed a full scale test bed of such a system in order to evaluate technologies that facilitate this transition. The test bed is similar in design to the NREL Power Systems Integration Laboratory (PSIL) and sized to represent a typical off-grid community. The objective of the present work is to model the ACEP test bed in DO and WD modes using MATLAB™ SIMULINK© and then validate the model with actual full-scale laboratory measurements. As will be shown, the frequency responses are grouped into three classifications based on their behavior. The model is shown to be successful in describing the frequency response of relatively small (0.15 per unit) steps in load. Modifications to the excitation system model are discussed which could improve the accuracy for larger steps in load. The ACEP test bed and associated SIMULINK© model are to be used in future work to support investigating WO operation.

Copyright © 2014 by ASME
Topics: Microgrids , Wind



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In