0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimized Energy Recovery in Line With Balancing of an ATES

[+] Author Affiliations
Mohammadreza Behi, Seyed Aliakbar Mirmohammadi

Eindhoven University of Technology, Eindhoven, The Netherlands

Alexander B. Suma

IBIS Power, Eindhoven, The Netherlands

Björn E. Palm

Royal Institute of Technology (KTH), Stockholm, Sweden

Paper No. POWER2014-32017, pp. V002T09A002; 10 pages
doi:10.1115/POWER2014-32017
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

The present study explores the potential imbalance problem of the Aquifer Thermal Energy Storage (ATES) system at the Eindhoven University of Technology (TU/e) campus, Eindhoven. This ATES is one of the largest European aquifer thermal energy storage systems, and has a seasonal imbalance problem. Reasons for this issue may be the high cooling demand from laboratories, office buildings and the direct ATES cooling system. Annually, cooling towers use on average 250 MWh electricity for the removal of about 5 GWh of excess heat from the ATES to the surroundings. In addition, the TU/e uses a large amount of natural gas for heating purposes and especially for peak supplies.

Recovering the surplus heat of the ATES, a CO2 Trans-critical Heat Pump (HP) system to cover particularly peak demands and total heating demand is proposed, modeled and optimized. The model is validated using data from International Energy Agency. Based on simulation results, 708294 nm3 of natural gas are saved where two different scenarios were considered for the ATES efficiency, cost saving and green house gas reduction. In scenario I, the COP of the ATES increased up to 50% by which K€ 303.3 energy cost and 1288.5 ton CO2 are saved annually. On the other hand, it will be shown that the ATES COP in Scenario II will improve up to 20%. In addition, the proposed energy recovery system results in a 606 ton CO2 -reduction and K€152.7 energy cost saving for the university each year.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In