0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Film Cooling Performance for a New Shaped Hole at the Leading Edge

[+] Author Affiliations
Tarek Elnady, Ibrahim Hassan

Concordia University, Montreal, QC, Canada

Paper No. POWER2014-32081, pp. V002T08A001; 10 pages
doi:10.1115/POWER2014-32081
From:
  • ASME 2014 Power Conference
  • Volume 2: Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes; Student Paper Competition
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4609-4
  • Copyright © 2014 by ASME

abstract

An experimental investigation has been performed to study the film cooling performance of a smooth expansion exit at the leading edge of a gas turbine vane. A two-dimensional cascade has been employed to measure the cooling performance of the proposed expansion using the transient Thermochromatic Liquid Crystal technique. One row of cylindrical holes, located on the stagnation line, is investigated with two expansion levels, 2d and 4d, in addition to the standard hole. The air is injected at 90° and 60° inclination angle relative to the vane surface at four blowing ratios ranging from 1 to 2 at a 0.9 density ratio. The Mach number and the Reynolds number based on the cascade exit velocity and the axial chord are 0.23 and 1.4E5, respectively. The detailed local heat transfer coefficient over both the pressure side and the suction side are presented in addition to the lateral-averaged normalized heat transfer coefficient. The proposed expansion provides a lower heat transfer coefficient compared with the standard cylindrical hole over the investigated blowing ratios. Combining the heat transfer coefficient with the corresponding cooling effectiveness, previously presented, the smooth expansion shows a significant reduction in the heat load with more uniform distribution of the coolant over the leading edge region. The strong confrontation between the coolant jet and the mainstream, in case of 90° injection, yields a strong dispersion of the coolant with higher heat transfer coefficient and high thermal load over the vane surface.

Copyright © 2014 by ASME
Topics: Film cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In