Full Content is available to subscribers

Subscribe/Learn More  >

Sootblowing Optimization Improves Heat Rate and Enhances Operational Flexibility at Hawthorn Unit 5

[+] Author Affiliations
Neel J. Parikh

Siemens Energy, Inc., Alpharetta, GA

Peter Rogge, Kenneth Luebbert

KCP&L, Kansas City, MO

Paper No. POWER2014-32280, pp. V001T06A008; 8 pages
  • ASME 2014 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance; Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4608-7
  • Copyright © 2014 by Siemens Energy, Inc.


Coal-fired units are increasingly expected to operate at varying loads while simultaneously dealing with various operational influences as well as fuel variations. Maintaining unit load availability while managing adverse effects of various operational issues such as, flue gas temperature excursions at the SCR inlet, high steam temperatures and the like presents significant challenges. Dynamic adjustment of sootblowing activities and different operational parameters is required to effectively control slagging, fouling and achieve reliability in unit operation.

Closed-loop optimizers aim to reduce ongoing manual adjustments by control operators and provide consistency in unit operation. Such optimizers are typically computer software-based and work by interfacing an algorithmic and/or artificial intelligence based decision making system to plant control system [1]. KCP&L is in the process of implementing Siemens SPPA-P3000 combustion and sootblowing optimizers at several Units.

The Sootblowing Optimizer solution determines the need for sootblowing based on dynamic plant operating conditions, equipment availability and plant operational drivers. The system then generates sootblower activation signals for propagation in a closed-loop manner to the existing sootblower control system at ‘optimal’ times.

SPPA-P3000 Sootblowing Optimizer has been successfully installed at Hawthorn Unit 5, a 594-MW, wall-fired boiler, firing 100 percent Powder River Basin coal. This paper discusses implementation approach as well as operational experience with the Sootblowing Optimizer and presents longer-term operational trends showing unit load sustainability and heat rate improvement.

Copyright © 2014 by Siemens Energy, Inc.
Topics: Heat , Optimization



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In