Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Superheater Operation in a Steam Boiler

[+] Author Affiliations
Marcin Trojan, Dawid Taler, Jan Taler, Piotr Dzierwa

Cracow University of Technology, Cracow, Poland

Paper No. POWER2014-32093, pp. V001T02A002; 15 pages
  • ASME 2014 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance; Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4608-7
  • Copyright © 2014 by ASME


A numerical method for modeling actual steam superheaters is presented. The finite volume method was used to determine flue gas, tube wall and steam temperature. The numerical technique presented in the paper can especially be used for modeling boiler superheaters with a complex tube arrangement when detail information on the tube wall temperature distribution is needed. The method of modeling the superheater can be used both in the design, performance as well as in upgrading the superheaters. If the steam temperature at the outlet of the superheater is too low or too high, the designed outlet temperature can be achieved by changing a flow arrangement of the superheater. For example, the impact of the change of the counter to parallel flow or to mixed flow can be easily assessed. The presented method of modeling is a useful tool in analyzing the impact of the internal scales or outer ash fouling on the superheater operating conditions. Both ash deposits at the external and scales at the internal surfaces of the tubes contribute to the reduction of the steam temperature at the outlet of the superheater. Furthermore, scale deposits on the inner surface of the tubes cause a significant temperature rise and may lead to the tube damage. The higher temperature of the flue gas over a part of parallel superheater tubes increases the steam temperature and decreases steam mass flow rate through the tubes with excessive heating. This results in an additional increase in the steam temperature at the outlet of the superheater.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In