0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion

[+] Author Affiliations
Zheming Zhang, Ramesh Agarwal

Washington University, Saint Louis, MO

Paper No. POWER2014-32290, pp. V001T01A018; 15 pages
doi:10.1115/POWER2014-32290
From:
  • ASME 2014 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance; Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4608-7
  • Copyright © 2014 by ASME

abstract

Chemical-looping combustion holds significant promise as one of the next generation combustion technology for high-efficiency low-cost carbon capture from fossil fuel power plants. For thorough understanding of the chemical-looping combustion process and its successful implementation in CLC based industrial scale power plants, the development of high-fidelity modeling and simulation tools becomes essential for analysis and evaluation of efficient and cost effective designs. In this paper, multiphase flow simulations of coal-direct chemical-looping combustion process are performed using ANSYS Fluent CFD code. The details of solid-gas two-phase hydrodynamics in the CLC process are investigated by employing the Lagrangian particle-tracking approach called the discrete element method (DEM) for the movement and interaction of solid coal particles moving inside the gaseous medium created due to the combustion of coal particles with an oxidizer. The CFD/DEM simulations show excellent agreement with the experimental results obtained in a laboratory scale fuel reactor in cold flow conditions. More importantly, simulations provide important insights for making changes in fuel reactor configuration design that have resulted in significantly enhanced performance.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In