0

Full Content is available to subscribers

Subscribe/Learn More  >

Soot Formation Reaction Effect in Modeling Thermal Partial Oxidation of Jet-A

[+] Author Affiliations
Richard Scenna, Ashwani K. Gupta

University of Maryland, College Park, MD

Paper No. POWER2014-32252, pp. V001T01A015; 5 pages
doi:10.1115/POWER2014-32252
From:
  • ASME 2014 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance; Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4608-7
  • Copyright © 2014 by ASME

abstract

The results obtained from the modeling of thermal partial oxidation of kerosene based Jet-A fuel are presented using one dimensional chemical modeling. Two detailed kinetic models for alkenes chemistry ranging between C8 to C16 were evaluated and compared against experimental data of thermal partial oxidation of Jet-A fuel. The key difference between these two kinetic models was the inclusion of model for soot formation reactions. Chemical modeling was performed using dodecane to represent Jet-A fuel.

The results showed that the model with soot reactions was significantly more accurate in predicting reformate products from Jet-A. In particular, the formation of carbon monoxide, methane and acetylene closely followed the experimental data with the model that included soot formation reactions. The results revealed that the soot formation reactions promoted the smaller hydrocarbons to decompose via the alternate kinetic pathways and from additional radical formation. The results also reveal that the inclusions of soot formation reactions are critical in the modeling of thermal partial oxidation of fuels for fuel reforming.

Copyright © 2014 by ASME
Topics: Modeling , oxidation , Soot

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In