0

Full Content is available to subscribers

Subscribe/Learn More  >

Xylene Addition Effects in Thermal Stage of Claus Reactors

[+] Author Affiliations
Salisu Ibrahim, Ashwani K. Gupta

University of Maryland, College Park, MD

Ahmed S. AlShoaibi

The Petroleum Institute, Abu Dhabi, UAE

Paper No. POWER2014-32056, pp. V001T01A006; 9 pages
doi:10.1115/POWER2014-32056
From:
  • ASME 2014 Power Conference
  • Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance; Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues
  • Baltimore, Maryland, USA, July 28–31, 2014
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4608-7
  • Copyright © 2014 by ASME

abstract

Experimental results are presented on the effect of xylene addition to H2S/O2 flames at equivalence ratio of 3.0 (Claus Condition) with respect to H2S and complete combustion of xylene. The results from the combustion of H2S/xylene mixture is compared with the baseline case of 100% H2S combustion to isolate the role of xylene addition in the Claus reactor. Combustion of H2S alone showed a decrease in its mole until it reached to an asymptotic minimum mole fraction value. This resulted in the formation of SO2 to a maximum mole fraction which subsequently decomposed from the formation of elemental sulfur through its reaction with H2S. Addition of small amount of xylene (0.5% and 1%) increased the asymptotic minimum value of H2S as well as the formation of H2 which provided oxidation competition between the formed H2 and H2S. Presence of xylene also triggered the formation of CH4 and CO which provided pathway on the formation of COS and CS2. The oxidation of CH4 and CO by SO2 and other sulfur radicals reduced the maximum mole fraction of SO2 but increased the subsequent rate of SO2 decomposition to increase the formation rate of elemental sulfur. These results show the direct impact of trace amounts of xylene in the feed stream on sulfur formation to reveal direct impact on the Claus reactor performance for sulfur capture.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In