0

Full Content is available to subscribers

Subscribe/Learn More  >

A Piezoelectric Regenerative Damper for Low-Frequency Application

[+] Author Affiliations
Arata Masuda, Yasuhiro Hiraki, Koki Yamane, Akira Sone

Kyoto Institute of Technology, Kyoto, Japan

Paper No. PVP2014-28856, pp. V008T08A009; 6 pages
doi:10.1115/PVP2014-28856
From:
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4607-0
  • Copyright © 2014 by ASME

abstract

In this study, a design of a regenerative damper for low-frequency applications, such as vibration suppression of long period infrastructures, tanks and pipings, and maritime and offshore structures, is presented. In this design, the low-frequency input motion to the damper is transformed to a high-frequency motion of piezoelectric cantilever oscillators by mechanical switching, so that the input work into the damper during the loading phase induces the free vibration of the oscillator. The mechanical energy of the free vibration is converted to the electric energy by a high efficiency interfacing circuit. In this paper, a conceptual model is mathematically formulated and tested to evaluate the potential performance of the proposed idea. It is shown that the combination of the mechanical switching with a circuit switching interface technique can expect the enhancement of the energy regeneration efficiency up to 30%.

Copyright © 2014 by ASME
Topics: Dampers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In