Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Rate of Adsorption of Moisture Onto Plutonium Oxide Powders

[+] Author Affiliations
James E. Laurinat, Matthew R. Kesterson

Savannah River National Laboratory, Aiken, SC

Steve J. Hensel

Savannah River Nuclear Solutions, Aiken, SC

Paper No. PVP2014-28073, pp. V007T07A024; 10 pages
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 7: Operations, Applications and Components
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4606-3
  • Copyright © 2014 by ASME


Rates of adsorption of moisture onto plutonium oxide powders exposed to air are modeled. The moisture contents of these powders must be limited to minimize the radiolytic generation of flammable hydrogen gas when the plutonium oxide subsequently is stored in containment vessels. The pressure in the vessels is related to the amount of moisture adsorbed. Moisture adsorption rates are modeled for powders in two different containers used by the Savannah River Site (SRS) HB-Line facility, a B vial and a product can. The adsorption models examine the effects of the powder layer fill height, gas mixing conditions above the powder layer, and ambient relative humidity. Moisture distribution profiles are calculated to enable the evaluation of the effect of sampling location on the measured moisture content. The adsorption models are applied using the COMSOL Multiphysics® finite element code. The COMSOL® models couple moisture diffusion with thermal conduction and radiation. The models incorporate an equilibrium adsorption isotherm and a detailed model for combined radiation and conduction heat transfer in the powder, both developed at Los Alamos National Laboratory. The COMSOL® adsorption rate calculations are successfully benchmarked using an analytical, one-dimensional ash and pore diffusion model.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In