Full Content is available to subscribers

Subscribe/Learn More  >

Validation Approaches for Weld Residual Stress Simulation

[+] Author Affiliations
Michael R. Hill, Minh N. Tran

University of California, Davis, CA

John E. Broussard

Dominion Engineering, Inc., Reston, VA

Paper No. PVP2014-28808, pp. V06BT06A068; 10 pages
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4604-9
  • Copyright © 2014 by ASME


In assessment of stress corrosion cracking behavior of susceptible welded materials, the contribution of weld residual stress is a key input for stress intensity factor calculations, which in turn are used to determine anticipated crack growth and to plan for inspection or repair. Without accurate weld residual stress information, it is challenging to develop an optimal plan for plant management. Weld residual stress simulations, based on non-linear finite element computations, provide a means to estimate residual stresses in components. However, there is no established, consensus approach for weld residual stress model validation, which could be used to judge model quality, specifically with respect to the influence of residual stress output on plant management decisions. A consensus model validation approach would benefit a broad range of stakeholders in pressure vessel technology.

The paper provides technical detail of example approaches for weld residual stress model validation, and applies these approaches to a set of weld residual stress model outputs that were developed in the context of an industry round robin. The set of outputs is from Phase 2a of the international round robin organized cooperatively by the U.S. Nuclear Regulatory Commission and the Electric Power Research Institute. Example validation approaches include comparisons of output from one model with output from other models, as well as comparisons of model output with data from residual stress measurements. The figures of merit used for comparisons range from simple (e.g., evaluation of mechanical section forces) to complex (e.g., comparison of predicted crack growth behavior). Applying a range of validation approaches provides information for use within the technical community, to support development of a consensus approach for weld residual stress model validation.

Copyright © 2014 by ASME
Topics: Simulation , Stress



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In