Full Content is available to subscribers

Subscribe/Learn More  >

Biaxial Residual Stress Mapping for a Dissimilar Metal Welded Nozzle

[+] Author Affiliations
Michael R. Hill, Mitchell D. Olson

University of California, Davis, Davis, CA

Adrian T. DeWald

Hill Engineering, Rancho Cordova, CA

Paper No. PVP2014-28328, pp. V06BT06A060; 8 pages
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4604-9
  • Copyright © 2014 by ASME


This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a nozzle mockup having two welds, one a dissimilar metal (DM) weld and the other a stainless steel (SS) weld. The mockup is cylindrical, designed to represent a pressurizer surge nozzle of a nuclear pressurized water reactor (PWR), and was fabricated for Phase 2a of the NRC/EPRI welding residual stress round robin. The mockup has a nickel alloy DM weld joining a SS safe end to a low-alloy steel cylinder and stiffening ring, as well as a SS weld joining the safe end to a section of pipe. The biaxial mapping experiments follow the approach described earlier, in PVP2012-78885 and PVP2013-97246, and comprise a series of experimental steps and a computation to determine a two-dimensional map of biaxial (axial and hoop) residual stress near the SS and DM welds. Specifically, the biaxial stresses are a combination of a contour measurement of hoop stress in the cylinder, slitting measurements of axial stress in thin slices removed from the cylinder wall, and a computation that determines the axial stress induced by measured hoop stress. At the DM weld, hoop stress is tensile near the OD (240 MPa) and compressive at the ID (−320 MPa), and axial stress is tensile near the OD (370 MPa) and compressive near the mid-thickness (−230 MPa) and ID (−250 MPa). At the SS weld, hoop stress is tensile near the OD (330 MPa) and compressive near the ID (−210 MPa), and axial stress is tensile at the OD (220 MPa) and compressive near mid-thickness (−225 MPa) and ID (−30 MPa). The measured stresses are found to be consistent with earlier work in similar configurations.

Copyright © 2014 by ASME
Topics: Metals , Stress , Nozzles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In