Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Finite Element Simulations of Elastic and Elastic-Plastic Crack Growth Using Automated Re-Meshing Techniques

[+] Author Affiliations
Tyler London, Simon D. Smith, Şefika Elvin Eren

TWI Ltd., Great Abington, Cambridge, UK

Paper No. PVP2014-28425, pp. V06BT06A033; 8 pages
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4604-9
  • Copyright © 2014 by ASME


This paper concerns the numerical simulation of elastic and elastic-plastic crack growth in welded components. Three-dimensional, spline-based, automatic crack re-meshing algorithms have been developed at TWI to simulate crack propagation using the commercial finite element analysis software ABAQUS. These methods allow for fatigue crack growth simulations employing the Paris law, mean stress effects and more advanced elastic crack growth laws, and incorporate nodal release techniques or iterative stationary crack methods coupled with experimentally measured tearing resistance curves for elastic-plastic crack growth. The flexibility, stability and accuracy of these numerical methods are demonstrated through several examples. The application of the crack growth simulations to full-life engineering critical assessments (ECA) of offshore structures is also described and demonstrated.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In