0

Full Content is available to subscribers

Subscribe/Learn More  >

Fracture Toughness After Long-Term Aging in 9Cr-1Mo-V Steel for Pressure Vessels

[+] Author Affiliations
Takeo Miyamura, Shigenobu Nanba

Kobe Steel, Ltd., Kobe, Hyogo, Japan

Tomoaki Nakanishi, Masato Yamada

Kobe Steel, Ltd., Takasago, Hyogo, Japan

Paper No. PVP2014-28578, pp. V06BT06A016; 8 pages
doi:10.1115/PVP2014-28578
From:
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4604-9
  • Copyright © 2014 by ASME

abstract

9Cr-1Mo-V steel with excellent high temperature strength is one of candidate materials for advanced pressure vessels in oil-refining plants, whose process temperature is expected to be around 500°C. Although 9Cr-1Mo-V steel has been applied as boiler tube material in power generation for a few decades, it was reported that embrittlement occurred after long-term aging around 600°C which is accelerated condition for pressure vessel operation. Since pressure vessels are more sensitive in stress-concentration around crack tip than boiler tube because of its large wall thickness, fracture toughness is an important property of concern when 9Cr-1Mo-V steel is applied to pressure vessels. In this research, 9Cr-1Mo-V steel with tempered-martensitic microstructure was aged up to max. 10000 hr at 500, 550 and 600°C, and fracture toughness was evaluated after the aging by Charpy impact test.

The influence of heat treatment conditions such as austenitizing, tempering and PWHT were also investigated, because the heat treatment conditions used in pressure vessels are different from those of boiler tube. In case of samples treated under the conditions for pressure vessels, Charpy impact values at 0°C were sufficient around 200J before aging, and decreased after aging depending on its conditions, and longer time and higher temperature led to more severe degradation. When the aging time at 550°C and 600°C was converted to the equivalent aging time at 500°C by Larson-Miller-equation, the impact value was estimated to keep over 50J after several decades at the operating temperature for pressure vessels. In contrast to the conditions for pressure vessels, the heat treatment conditions used in boiler tube made initial impact value decreased significantly, because tempering and PWHT were shorter than those of pressure vessels. Therefore, the samples heat treated under boiler tube conditions showed lower impact values around 50J in the earlier stage of aging. Considering all obtained results, it was suggested that the serious degradation of fracture toughness in 9Cr-1Mo-V after long term aging would not occur in actual service time for pressure vessels.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In