0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Indentation Load on Vickers Hardness of Austenitic Stainless Steel After Hydrogen Charging

[+] Author Affiliations
Osamu Takakuwa, Yuta Mano, Hitoshi Soyama

Tohoku University, Sendai, Japan

Paper No. PVP2014-28280, pp. V06BT06A011; 6 pages
doi:10.1115/PVP2014-28280
From:
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4604-9
  • Copyright © 2014 by ASME

abstract

In order to reveal the effect of indentation load on Vickers hardness of austenitic stainless steel after hydrogen charging, the Vickers hardness measurements have been conducted with three different indentation load of 0.49, 1.96 and 9.80 N on the surface of type 316L austenitic stainless steel after hydrogen charging. Relationship between plastic deformation behavior during indentation process and hydrogen absorption behavior was revealed. In the Vickers hardness test, Vickers hardness keeps same value though the indentation load varies. Needless to say, the value did not depend on magnitude of the indentation load before hydrogen charging in the present study. However, the Vickers hardness increased along with hydrogen charging time and, interestingly, the increase in the Vickers hardness due to the presence of hydrogen depends on magnitude of the indentation load. In the load of 0.49 N and 9.80 N, the Vickers hardness has a maximum value of 3.04 and 2.04 GPa which is 1.58 and 1.15 times larger than value of 1.73 and 1.70 GPa before hydrogen charging, respectively. The hydrogen-induced hardening behavior observed by the Vickers hardness tests employing different indentation load would be evaluated by the relationship between the plastic deformation depth and the hydrogen absorption depth.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In