Full Content is available to subscribers

Subscribe/Learn More  >

Clamp Load Decay in Preloaded Dissimilar Lightweight-Material Joints due to Cyclic Temperature

[+] Author Affiliations
Sayed A. Nassar, Amir Kazemi, Mohamad Dyab

Oakland University, Rochester, MI

Paper No. PVP2014-28269, pp. V002T02A025; 9 pages
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 2: Computer Technology and Bolted Joints
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4599-8
  • Copyright © 2014 by ASME


Experimental and Finite Element methods are used for investigating the effect of cyclic thermal loading on the clamp load decay in preloaded single-lap bolted joints that are made of dissimilar-materials. Joint material combinations include steel and lightweight materials such as aluminum and magnesium alloys, with various different thicknesses. The range of cyclic temperature profile varies between −20°C and +150°C. A computer-controlled environmental chamber is used for generating the desired cyclic temperature profile and duration. Real time clamp load data is collected using high-temperature load cells. Percent clamp load decay is investigated for various combinations of joint materials, initial preload level, and test specimen thicknesses. Thermal and material creep finite element analysis is performed using temperature-dependent mechanical properties. FEA result has provided insight into interesting experimental observations regarding model predictions and the experimental data is discussed.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In