0

Full Content is available to subscribers

Subscribe/Learn More  >

A Survey Method to Optimize Bolted Flanged Joint Assembly Torques for ASME B16.5 Flanges

[+] Author Affiliations
Anita R. Bausman

VSP Technologies, Inc, Kingsport, TN

A. Fitzgerald (Jerry) Waterland, III

VSP Technologies, Inc, Prince George, VA

Paper No. PVP2014-28270, pp. V002T02A001; 12 pages
doi:10.1115/PVP2014-28270
From:
  • ASME 2014 Pressure Vessels and Piping Conference
  • Volume 2: Computer Technology and Bolted Joints
  • Anaheim, California, USA, July 20–24, 2014
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4599-8
  • Copyright © 2014 by ASME

abstract

The three critical components within a bolted, flanged connection are the flanges, gasket, and bolts. Until recently, simplified flange assembly target torque values for ASME B16.5 flanges were routinely determined by considering just one or two of these primary components.

One approach considers only the gasket. Gasket-based target torque values are selected to optimize the gasket’s sealing performance by ensuring compression between minimum and maximum seating stress ranges, or based upon achieving specific levels of gasket Tightness (Tp). Another approach, fastener-based torque values, simply targets a specific bolt preload during assembly, typically some percentage of bolt material yield stress. A third approach optimizes gasket seating stress or tightness within the specific preload stress range of particular grades of fasteners. None of these approaches consider the physical limitations and capabilities of the flange itself, which can result in flange damage due to excessive bolt preload or the lost opportunity to gain fatigue resistance and reliability when low fastener preloads are selected [1].

While detailed Finite Element Analysis (FEA) could meet this objective, cost and time constraints limit the number, size, and materials to be considered. The objective of this method to optimize target assembly torques for B16.5 flanges is to identify the likely maximum safe assembly bolt load not exceeding the compression, yield, or tensile limits of any of the three flange components. It is recognized that some localized yielding does occur. Existing industry efforts to study and optimize target torques are surveyed, reviewed, combined, and extrapolated to determine acceptable torque values that conform to selected component limits. The limits are chosen consistent with normal practice in the chemical, process, and power industries.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In